Catastrophe theory and caustics of radially symmetric beams
نویسندگان
چکیده
منابع مشابه
Caustics, catastrophes, and symmetries in curved beams
Pablo Vaveliuk,1,* Alberto Lencina,1,2 José A. Rodrigo,3 and Oscar Martinez Matos3 1Centro de Investigaciones Ópticas (CONICET La Plata-CIC), Cno. Centenario y 506, P.O. Box 3, 1897 Gonnet, Argentina 2Departamento de Fı́sica, Fac. de Cs. Exactas, Universidad Nacional de La Plata, P.O. Box 67, 1900 La Plata, Pcia. de Buenos Aires, Argentina 3Departamento de Óptica, Facultad de Ciencias Fı́sicas, U...
متن کاملExistence Theory for the Radially Symmetric Contact Lens Equation
In this paper we present a variational formulation of the problem of determining the elastic stresses in a contact lens on an eye and the induced suction pressure distribution in the tear film between the eye and the lens. This complements the force-balance derivation that we used in earlier work [K. L. Maki and D. S. Ross, J. Bio. Sys., 22 (2014), pp. 235–248]. We investigate the existence of ...
متن کاملBuckling Behaviors of Symmetric and Antisymmetric Functionally Graded Beams
The present study investigates buckling characteristics of both nonlinear symmetric power and sigmoid functionally graded (FG) beams. The volume fractions of metal and ceramic are assumed to be distributed through a beam thickness by the sigmoid-law distribution (S-FGM), and the symmetric power function (SP-FGM). These functions have smooth variation of properties across the boundary rather tha...
متن کاملRadially symmetric nonlinear photonic crystals
Different types of quadratic, radially symmetric, nonlinear photonic crystals are presented. The modulation of the nonlinear coefficient may be a periodic or an aperiodic function of the radial coordinate, whereas the azimuthal symmetry of the crystal may be either continuous or discrete. Nonlinear interactions within these structures are studied in two orientations, transverse and longitudinal...
متن کاملRadially Symmetric Patterns of Reaction-Diffusion Systems
In this paper, bifurcations of stationary and time-periodic solutions to reactiondiffusion systems are studied. We develop a center-manifold and normal form theory for radial dynamics which allows for a complete description of radially symmetric patterns. In particular, we show the existence of localized pulses near saddle-nodes, critical Gibbs kernels in the cusp, focus patterns in Turing inst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Optics
سال: 2019
ISSN: 2412-6179,0134-2452
DOI: 10.18287/2412-6179-2019-43-2-159-167